SUMMER STYLE
-
Телевизор Samsung QE55Q70CAU 96,057.00 Br
-
Телевизор Asano 24LH7011T 10,323.00 Br
-
Телевизор TCL 43P7K 36,012.00 Br
-
Телевизор LG 65UT80006LA 69,502.00 Br
For orders above €100
For All Your Questions
Products variations colors and images without any additional plugins.
Учёные из Университета Сиднея (University of Sydney) разработали контроллер контроллер спиновых кубитов, который способен работать при температуре в несколько милликельвинов. Это почти рядом с абсолютным нулём (-273,15 °C), когда колебания атомов практически затухают. Разработка позволит расположить контроллер рядом со сверхпроводящими кубитами, которыми он управляет, что обеспечит лёгкость масштабирования квантовых компьютеров до сотен тысяч и миллионов кубитов.
Современный квантовый вычислитель на сверхпроводящих кубитах немыслим без множества кабелей, которые выходят из криогенной камеры с кубитами. Кубиты должны охлаждаться до температуры, близкой к абсолютному нулю, чтобы их квантовые состояния не нарушались во время запуска программ — это снижает помехи и влияние шума. Однако контролирующую кубиты электронику нельзя поместить внутрь криогенной камеры — электроника просто откажется работать. Полупроводники контроллера потеряют свои рабочие характеристики. Поэтому приходится использовать множество кабелей. Кроме того, электроника выделяет тепло, что разрушит квантовые состояния кубитов, если она будет находиться рядом с ними.
Запутанное и многочисленное кабельное хозяйство затрудняет масштабирование компьютеров на сверхпроводящих кубитах. Поэтому вопрос переноса управляющей электроники в камеру с кубитами — это вопрос масштабирования. Так, компания Intel смогла создать контроллеры, которые выдерживают охлаждение чуть ниже 4 К, но этого недостаточно. Дальше всех пошла американская компания SEEQC (Superconducting Energy Efficient Quantum Computing), которая в 2023 году сообщила о разработке CMOS-контроллера, способного работать при охлаждении до 20 мК — это уже значимый результат. Учёные из Австралии не уточняют точные температуры, которых они смогли достичь, но по их словам, это несколько милликельвинов.
Разработка оказалась настолько перспективной, что на её основе профессора Университета Сиднея создали сразу три стартапа: Uniii, Emergence Quantum и Diraq. Все они будут коммерциализировать технологию производства сверхтолерантных к охлаждению CMOS-контроллеров для управления сверхпроводящими кубитами. Точнее, речь идёт о спиновых кубитах, которые используют в качестве квантового бита один электрон и управляют его спином.
По сути, это обычные транзисторы, в канале которых используется один-единственный электрон. Таких транзисторов можно изготовить миллиард на каждый квадратный сантиметр — и это можно масштабировать до невообразимых пределов. Но с управлением такого массива кубитов всё упирается в пучки кабелей. Поэтому мы снова возвращаемся к переносу управляющей электроники внутрь криогенной системы. Как утверждают австралийцы, у них теперь есть решение.
Более того, в опубликованной в журнале Nature работе исследователи показали, что их CMOS-контроллер не только работает при охлаждении до нескольких милликельвинов, но также выделяет крайне мало тепла — всего 20 нВт/МГц. На примере однокубитовой и двухкбитовой платформы они продемонстрировали, что расположение контроллера на расстоянии 3 мм от квантового процессора не повлияло на кубиты. Время когерентности оставалось примерно одинаковым как с контроллером внутри, который потреблял 10 мкВт, так и с управлением кубитами по кабелям внешним контроллером.
«Это даёт надежду на то, что кубитами действительно можно управлять в больших масштабах, интегрируя сложную электронику в [рабочие] условия криогенных температур. В нашей статье показано, что при тщательном проектировании системы управления хрупкие кубиты вряд ли заметят переключение транзисторов в чипе, расположенном на расстоянии менее миллиметра», — резюмируют авторы работы.